Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 21521, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057365

RESUMO

Food emulsifier are mostly prepared from a lipophilic lipid tail with a hydrophilic sugar head. In this study, the lipophilic tail was obtained from apricot kernels, which are food waste, and the hydrophilic head was gluconic acid instead of sugar, in order to draw attention to the non-cyclic poly hydroxyl compounds. Thus, oleic acid of apricot kernel was used as the lipophilic moiety of the prepared surfactant. So, apricot kernel was grinned and dried, oil was extracted using soxhlet apparatus, Physical and chemical parameters and fatty acids composition of the extracted oil had been determined. The extracted oil was then hydrolyzed into glycerol and a mixture of free fatty acids. The fatty acids mixture was separated. Then, oleic acid was extracted individually in pure form using supercritical CO2 extractor, it was then confirmed according to its melting point, Gas chromatography-mass spectrometry (GC-MS) after esterification, elemental analysis, Proton nuclear magnetic resonance (H1NMR), and mass spectrometry (MS) to detect the corresponding molecular ion peak. The pure individual oleic acid was converted to hydroxy stearic acid, which was then converted to an amphiphilic compound (surfactant) via esterification reaction with the hydrophilic gluconic acid, and afforded a new surfactant known as 2,3,4,5-tetrahydroxy-6-((9-((-2,3,4,5,6-pentahydroxyhexanoyl) oxy)octadecanoyl) oxy)hexanoic acid or stearyl gluconate for simplification. The structures elucidation of all synthesized compound was established according to elemental analysis and spectral data (Fourier transform infrared IR, 1H NMR, 13C NMR and MS). Moreover, the prepared compound was tasted for its antibacterial activity, and showed good activities against some types of bacteria. The surface-active properties, foamability, foaming stability and emulsion stability of stearyl gluconate were studied and compared with the properties of the well-known surfactant sucrose stearate, and it was clear that, the activity of stearyl gluconate as a surfactant was higher than that of sucrose stearate. Moreover, establishment of safety of this compound was performed using albino rats by acute oral toxicity and kidney and liver functions of these mice. On the other hand, the prepared surfactant was used in the production of low fat-free cholesterol mayonnaise as egg replacer. Texture properties and the sensory evaluation of the prepared mayonnaise showed that the properties were improved by using the new prepared surfactant. Thus, the prepared gluconyl stearate can be used as a safe food additive.


Assuntos
Prunus armeniaca , Eliminação de Resíduos , Ratos , Camundongos , Animais , Prunus armeniaca/química , Tensoativos , Alimentos , Óleos de Plantas/química , Ácidos Graxos/análise , Gluconatos , Antibacterianos/farmacologia , Açúcares , Ácidos Oleicos
2.
J Oleo Sci ; 72(2): 139-151, 2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36631100

RESUMO

Due to over worldwide use of frying oil, and due to its oxidation and deterioration after the usage for short time, huge oil amounts are wasted. So, most attempts are aimed to increase oil stability. Quercetin is a common name for the lipophobic strong natural phenolic antioxidant 2-(3,4-Dihydroxyphenyl)-5,7-dihydroxy-4H-1-benzopyran-4-one. Thus, its solubility had been improved by converting it to a lipophilic compound via its appending to a fatty acid residue. So, regioselectively 2-(3,4-Dihydroxyphenyl)-5,7-dihydroxy-3-[Hexadecanyl]oxychromen-4-one commonly named as (Quercetin-3-palmitate) was synthesized. The formed compound was confirmed based on its elemental analysis and spectral data (IR, 1H NMR and MS). The partition coefficient of Quercetin-3-palmitate in octanol/water (k) was determined and compared to that of palmitic acid and quercetin individually to prove its solubility enhancement. Its radical scavenging activity was then tested. The effect of this new antioxidant compound on the oil stability was studied through the frying process. All physical and chemical parameters of this oil were considered before and after the frying process compared to another reference antioxidant (TBHQ) and control sample. The safety of this compound was determined by acute oral toxicity using albino mice. The liver and kidney functions of these mice were also examined. The results showed non-significant change. A sensory evaluation of the fried potato chips has been done. The results showed that the properties of the potato chips were improved by adding Quercetin-3-palmitate to the oil. Thus, good protection against frying oils oxidation was achieved via the addition of Quercetin-3-palmitate. The Quercetin-3-palmitate effectiveness is mainly attributed to its stability at high temperatures. Moreover, Quercetin-3-palmitate was found to be a safe compound according to an acute lethal toxicity test. Consequently, it can be used as a food additive.


Assuntos
Antioxidantes , Quercetina , Camundongos , Animais , Antioxidantes/análise , Quercetina/análise , Palmitatos , Óleos/análise , Culinária/métodos , Temperatura Alta
3.
Sci Rep ; 12(1): 18465, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36323708

RESUMO

This experiment involved the chemical conversion of pure stearic acid from buffalo adipose tissue to a waxy stearyl stearate, which was subsequently applied as a coating film to extend the shelf life of recently harvested fruits. Fat was extracted from minced adipose tissue using the dry rendering procedure, and it was then characterized. The extracted fat was hydrolyzed into a mixture of free fatty acids and glycerol. The supercritical CO2 extractor was used for stearic acid individual extraction in pure form from the free fatty acid mixture, and it was confirmed according to its melting point (69.2-70.0 °C), elemental analysis, GC-MS for esterified fatty acids. The isolated stearic acid was used for the synthesis of a new hydrophobic wax named stearyl stearate. The chemical structure of the prepared compound was established according to its elemental analysis and spectral data. The new hydrophobic wax was used as a coating film to enhance the shelf life of freshly harvested tomato fruits. Therefore, stearyl stearate solution (2.00% w/v diethyl ether) was used for tomato coating and compared to chitosan-coated tomatoes, where weight loss, pH, fruit firmness, ascorbic acid concentration, and total soluble solids were studied for a period of 15 days at 23 ± 1.0 °C and 65 ± 2.0% relative humidity. The results revealed that coating with stearyl stearate solution (2.00% w/v diethyl ether) could delay tomatoes' ripening during the experiment condition. A sensory evaluation of the coated tomatoes was carried out and showed acceptable taste for the tomatoes that were coated with stearyl stearate. On the other hand, the acute oral toxicity of stearyl stearate using albino mice showed complete safety up to 25 g/kg mice weight.


Assuntos
Búfalos , Solanum lycopersicum , Camundongos , Animais , Éter , Ácidos Esteáricos/química , Solanum lycopersicum/química , Ácidos Graxos não Esterificados , Tecido Adiposo
4.
J Oleo Sci ; 66(11): 1263-1271, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29021490

RESUMO

A new amphiphilic antioxidant (tannyl stearate) derived from reaction of tannic acid with stearic acid was synthesized in order to improve tannic acid solubility in lipid materials. This reaction gives many products having different degree of esterification (tannyl mono, di, tri, tetra, penta, hexa, hepta……stearate) which were separated using silica gel column chromatography and tentative identification was carried out using thin layer chromatography (TLC). The intrinsic viscosities (η) were used to differentiate between the different molecular weight of the produced esters1). Tannyl penta stearate is assumed to be the most suitable amphiphilic antioxidant derivative, where those derivatives with less degree of esterification would be less soluble in fat, and those of higher degree of esterification would exhaust more hydroxyl group that cause decreases of antioxidant activity. The structure of tannyl penta stearate was approved depending on its chemical analysis and spectral data (IR, H1 NMR,). The emulsification power of tannyl penta stearate was then determined according to method described by El-Sukkary et al.2), in order to prove its amphiphilic property. Then tannyl penta stearate was tested for its antioxidant and radical scavenging activities in three different manners, those are, lipid oxidation in sunflower oil using Rancimat, (DPPH) free radical scavenging and total antioxidant activity. {Pure tannic acid (T), butylhydroxyanisol (BHA) and butylhydroxytoluene (BHT) were used as reference antioxidant radical saving compounds}. Then tannyl penta stearate was added to sunflower oil, frying process was carried out and all physicochemical parameters of the oil were considered, and compared to other reference antioxidant in order to study the effect of this new antioxidant toward oil stability. Acute oral toxicity of the tannyl penta stearate was carried out using albino mice of 21-25 g body weight to determine its safety according to the method described by Goodman et al.3). Also liver and kidney functions of those mice were checked. Thus it could be concluded that the addition of tannyl penta stearate to frying oils offers a good protection against oxidation. The effectiveness of tannyl penta stearate as lipid antioxidant has been attributed mainly to its stability at high temperature. And according to acute lethal toxicity test tannyl penta stearate was found to be a safe compound that can be used as food additive.


Assuntos
Antioxidantes/síntese química , Emulsificantes/síntese química , Estearatos/síntese química , Taninos/síntese química , Animais , Antioxidantes/farmacologia , Antioxidantes/toxicidade , Compostos de Bifenilo/química , Hidroxianisol Butilado/química , Hidroxitolueno Butilado/química , Emulsificantes/farmacologia , Emulsificantes/toxicidade , Ácidos Graxos/química , Sequestradores de Radicais Livres/síntese química , Sequestradores de Radicais Livres/farmacologia , Sequestradores de Radicais Livres/toxicidade , Testes de Função Renal , Testes de Função Hepática , Camundongos , Picratos/química , Ratos , Solubilidade , Estearatos/farmacologia , Estearatos/toxicidade , Ácidos Esteáricos/química , Óleo de Girassol/química , Taninos/química , Taninos/farmacologia , Taninos/toxicidade , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...